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Summary

We deal with the new notion of multi-
attribute aggregation operator, which incor-
porates many standard aggregation methods,
and classify classical properties into some
main groups. Different examples are pro-
vided.
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1 INTRODUCTION

Though the fusion of observed numerical input values
into a single output value can be found in the major-
ity of areas dealing with quantitative information, the
theory of aggregation can be dated to the last decade
only. The axiomatic framework for aggregation pro-
posed in [7], not limited to a fixed number of inputs,
was related to earlier ideas on n-ary aggregation func-
tions discussed in [6], and we call this approach ”clas-
sical”. For an overview of results linked to classical
aggregation functions we recommend a recent mono-
graph ([5]). The classical approach covers huge classes
of aggregation techniques with different roots, such as
different kinds of means, conjunctive and disjunctive
operators, and usually parametric classes of such op-
erators are exploited to model an appropriate aggrega-
tion in each discussed domain, often based on fitting
the optimal parameters to a sample space. A recursive
approach proposed in [2] is based on a consecutive ap-
plication of binary aggregation operators, which may
differ in different steps, and thus reflect a development
of an observed process. However, the basic theory of
aggregation seems to be incomplete, because it does
not adequately contemplate the crucial role played in

many cases by some collateral parameters, called in the
sequel attributes. Note that some particular methods
based on attributes are well-known, especially various
kinds of weighted aggregation ([1]) or induced aggre-
gation ([8]), but a unified theory of multi-attribute ag-
gregation operators is not yet known in literature. The
aim of our paper is to fill this gap.

2 BASIC CONCEPTS

Throughout the paper, we assume that I is a nonempty
real interval and we set a := inf I and b := sup I. Note
that a and b might belong to I or not, possibly with
a = −∞ or b = +∞.

Let us now introduce the concept of aggregation op-
erator in a formal way. In the following, fixed any
n ∈ N, let Gn be an arbitrary mapping defined on I

n

into I. Further, we denote by δGn : I → I the diago-
nal section of Gn defined as δGn ≡ Gn|diag(In), where
diag(In) := {(x, . . . , x) : x ∈ I} ⊂ I

n.

Definition 2.1. We say that Gn : I
n → I is an ag-

gregation function in I
n if it is non-decreasing in each

component and fulfills the boundary conditions

inf
x∈In

Gn(x) = a and sup
x∈In

Gn(x) = b. (2.1)

From now on, we denote with G a sequence {Gn}n∈N

of functions such that each Gn maps I
n into I. Now, we

remind the classical definition of aggregation operator.

Definition 2.2. We say that G:
∞⋃

n=1
I
n → I is a clas-

sical aggregation operator in I if any Gn is an aggre-
gation function in I

n, with G1 ≡ id, where id is the
identity function.

Note that the classical aggregation operators were also
called extended aggregation functions (see [5]). A new,
enlarged notion of aggregation operator is the follow-
ing.
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Definition 2.3. We say that G:
∞⋃

n=1
I
n → I is an

aggregation operator in I, when every Gn is non-
decreasing in each component and the following con-
ditions are verified:

lim inf
n→∞ inf

x∈In
Gn(x) = a and lim sup

n→∞
sup
x∈In

Gn(x) = b.

(2.2)

Remark 2.1. First of all, observe that the require-
ment that every Gn ∈G must be an aggregation func-
tion fails. This is due to the fact that, in place of
eq. (2.1), to be satisfied by any single mapping of G, we
have formulated a unique boundary condition, repre-
sented by eq. (2.2), valid for the whole operator. More-
over, the conventional position G1 ≡ id (the identity
function) is not axiomatically imposed, even if it is
allowed, because it may set strong constraints to the
structure of the operator up to incompatibility with
certain properties of G (see, for instance, [4]). Finally,
for the rest of the paper, the concept of Aggregation
Operator (AgOp, in brief) will be always implicitly re-
ferred to Definition 2.3, unless otherwise specified.

Remark 2.2. It is not difficult to see that eq. (2.2) is
equivalent to saying that

lim inf
n→∞ δ+

Gn
(a) = a (2.3)

and
lim sup

n→∞
δ−Gn

(b) = b, (2.4)

where

δ+
Gn

(a) :=

{
δGn

(a), if a ∈ I,

lim
x→a+

δGn
(x), otherwise;

and

δ−Gn
(b) :=

{
δGn

(b), if b ∈ I,

lim
x→b−

δGn(x), otherwise,

Example 2.1. We present now three cases of not clas-
sical AgOps in I = [0, 1]. In the first, let G be defined
as

Gn(x) = max(x) ·

n∑
i=1

xi

1 +
n∑

i=1

xi

,

where max stands for the maximum operator. Since
δGn(1) = n

1+n , eq. (2.4) is trivially satisfied in the
elementary form of a monotonically attained limit.

In the second, G is given by

Gn(x) =

⎧⎪⎪⎨
⎪⎪⎩

max(x) ·
n∑

i=1
xi

1+
n∑

i=1
xi

, if n is even;

AM(x), otherwise,

where AM is the arithmetic mean. Since

δGn(1) =

{
n

1+n , if n is even;
1, otherwise,

eq. (2.4) is fulfilled as a (not monotonically attained)
limit.

Finally, fixed any c ∈ ]0, 1[, let G be defined as

Gn(x) =

⎧⎪⎪⎨
⎪⎪⎩

c · max(x) ·
n∑

i=1
xi

1+
n∑

i=1
xi

, if n is even;

AM(x), otherwise.

In this case, we have

δGn
(1) =

{
c · n

1+n , if n is even;
1, otherwise,

hence eq. (2.4) still holds, but not as an ordinary limit.

Now, we introduce a sharp classification of the proper-
ties which may characterize any AgOp into two classes.

Definition 2.4. We say that a property P for an
AgOp G in I is static, when every Gn verifies P. Oth-
erwise, P is called dynamic when it links Gn and Gm

for different indices n, m ∈ N.

Definition 2.5. An n-ary function Gn : I
n → I is

idempotent when
δGn

≡ id. (2.5)

An AgOp G in I is idempotent when it fulfills eq. (2.5)
for all n ∈ N.

Definition 2.6. We say that an AgOp G in I is self-
identical (see [9]) if, given any x ∈ I

n, then

Gn(x1, ..., xn) = Gn+1(x1, ..., xn, Gn(x1, ..., xn))

for all n ∈ N.

Idempotency is clearly a static property, while self-
identity is dynamic. However, there are cases in which
a property might be formulated both under the static
and the dynamic point of view.

Definition 2.7. Let Gn : I
n → I be an n-ary function.

We say that e ∈ I is a static neutral element for Gn

if, fixed any i ∈ Nn, then

Gn(x) = xi (2.6)

for any x ∈ I
n verifying xj = e for all j ∈ Nn \ {i}.

We say that e ∈ I is a static neutral element for an
AgOp G in I when it satisfies eq. (2.6) for all n ∈ N.

Observe that, for n = 1, eq. (2.6) is nothing but the
condition G1 ≡ id, and if n = 2 we recover the classical
algebraic property G2(x, e) = G2(e, x) = x.
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Definition 2.8. We say that e ∈ I is a dynamic neu-
tral element for an AgOp G in I if, for every i ∈ Nn+1

and for any x ∈ I
n+1 such that xi = e, then

Gn+1(x) = Gn(x1, . . . , xi−1, xi+1, . . . , xn+1) (2.7)

for all n ∈ N.

It is possible to provide examples which show that, in
general, these two forms of ”neutrality” are each other
independent.

Finally, we specify the range of application of a prop-
erty P, independently of the static or dynamic case.
For the rest of the section, let q ∈ N.

Definition 2.9. We say that P is a q-property for
an AgOp G in I, when it does not concern the first
G1, . . . , Gq−1 mappings of the operator. The index q
may be omitted in the classical case, i.e. when q = 1.

Example 2.2. Let G be defined on I = [0, 1] as

Gn(x) =

⎧⎨
⎩

1
q

n∑
i=1

xi, if n ≤ q;

AM(x), otherwise.

It is easy to see that G is a q-idempotent AgOp.

Example 2.3. Let α : [0, 1] → [0, 1] be any non-
decreasing mapping, not reducible to the identity, such
that α(t) = t on the boundary. Let G be defined on
the real unit interval as

Gn(x) =

{
max(α(x)), if n > 1;
id, otherwise,

where α(x) := (α(x1), . . . , α(xn)) for any n-tuple x.
It is not difficult to see that G is a classical AgOp (by
Definition 2.2) in [0, 1] admitting x = 0 as 2-dynamic
neutral element. Note that, unlike the classical case,
even if G1 ≡ id, zero is not a 2-static neutral element.

3 A MULTI-ATTRIBUTE AGOP

In this section, we introduce a new concept of aggre-
gation operators, based upon the idea that in some
cases any input value may be accompanied by a set of
attributes which enter the process of fusion of the data
in the sense that anyone of them has the property to
influence, monotonically or not, the final result of the
aggregation.

In the sequel, fixed p ∈ N, let Ik be a nonempty real
interval for any k ∈ Np, and we set ak := inf Ik

and bk := sup Ik, with the same degrees of free-
dom as for the boundaries of I. We denote with
dk := (dk

1 , . . . , dk
n) any vector belonging to I

n
k for each

k ∈ Np.

Definition 3.1. We say that D(p) := I1×I2× . . .×Ip

is a p-dimensional set of multi-attributes and denote
by d := (d1,d2, . . . ,dn) any multi-vector belonging
to Dn(p) , where dj := (d1

j , . . . , d
p
j ) for each j ∈ Nn.

When p = 1, we will adopt the simplified notation
d = (d1, . . . , dn).

We also need to introduce the family of all sequences of
multi-attributes, denoted by F = {μ = {d(n)}n∈N

⊂
∞⋃

n=1
Dn(p)}. Consistently with the previous notations,

we will adopt the symbols dj (n) and dk
j (n) respectively

for the j-th p-tuple of attributes of d(n) and for the k-
th attribute of d(n) related to the j-th argument of
x.

From now on, we denote with F={Fn}n∈N any se-
quence of functions such that each Fn maps I

n×Dn(p)
into I.

Remark 3.1. Suppose we have n values x1, . . . , xn to
aggregate using a mapping Fn. If xj properly repre-
sents an argument of the fusion for each j ∈ Nn, any of
the attributes belonging to dj is a parameter with the
precise task to reveal an additional information about
a particular aspect of the j-th argument. We could say
that the presence of the attributes somehow enhances
the reliability of the final output value, because the
overall information coming from the data, compared
with the case of no attributes, is richer. Obviously, all
the attributes d1

j , . . . , d
p
j are independent of the j-th

argument and also each other, in order to avoid any
problem of superfluity.

Remark 3.2. In the literature, to the best of our
knowledge, the only explicit precedent of aggregation
operator where any input value is accompanied by
a sort of parameter is given by the Induced Ordered
Weighted Averaging (IOWA for short, see [8]). An
IOWA operator of dimension n essentially aggregates
objects which are pairs (uj , aj), for j ∈ Nn, where aj

is the j-th argument, while uj is the j-th order induc-
ing variable, related to the weight wj of a given vector
W . Actually, the most important difference with our
case is that u1, . . . , un play the role of dummy vari-
ables, because they influence the output value without
directly entering the process of fusion.

Definition 3.2. We say that F :
∞⋃

n=1
I
n × Dn(p) → I

is a multi-attribute aggregation operator (briefly, M-
AgOp) in I × D(p) if every Fn = Fn(x,d) is non-
decreasing in each component of x and if, fixed any
μ = {d(n)} ∈ F , then

lim inf
n→∞ inf

x∈In
Fn(x,d(n)) = a and

lim sup
n→∞

sup
x∈In

Fn(x,d(n)) = b. (3.1)
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It is clear that eq. (3.1) generalizes eq. (2.2), given
in Definition 2.3: we stress the fact that the operator
F is demanded to reach the boundaries of its range,
when the components of the vector x ∈ I

n tend to the
border of the domain as n increases, independently of
the values of the attributes. This requirement confirms
the fact that, at any dimension n, the input values
given by the vector x prevail over the attributes in
the process of aggregation. Moreover, eq. (3.1) allows
a M-AgOp F in I × D(p) to induce infinitely many
AgOps Gμ in I defined as Gμ

n(x) = Fn(x,d(n)), for
any fixed μ = {d(n)} ∈ F .

A special attention is paid to the case of monotonicity
of a M-AgOp F with respect to the attributes.

Definition 3.3. Given any k ∈ Np, we say that Ik is
positive with respect to F if every Fn is non-decreasing
in each component of dk ∈ I

n
k , for all n ∈ N. On the

other hand, Ik is called negative if every Fn is non-
increasing in each component of dk ∈ I

n
k , for all n ∈ N.

In the following, with abuse of language, we will say
that a M-AgOp F is positive (negative) if all the sets
of attributes are positive (negative).

Example 3.1. Consider a scenario in which a central
authority must collect the votes of anonymous peers
of a network about the trust value they express with
respect to the behavior of a certain peer. Initially,
we suppose that all the votes have the same weight
and the central authority combines the input values,
belonging to the real unit interval, to obtain a single
fused estimate through a root-mean-power G of the
kind

Gn(x) =
( 1

n

n∑
i=1

xp
i

) 1
p

,

where the exponent p is some fixed real number. Sup-
pose now that the central authority intends to distin-
guish the data according to the network distance of
any single voting peer to the subject matter of the
judgement, in the sense that the bigger is such dis-
tance, the smaller is the reliability of the input value.
Assume that our basic philosophy is not to overturn
the choice of the previous operator: motivated by this
idea, we could use a weighted root-mean-power Gw of
the kind

Gw
n (x) =

( n∑
i=1

wix
p
i

) 1
p

,

where the weight vector w ∈ [0, 1]n is such that
n∑

i=1

wi = 1 (see [5] and the references therein). Ob-

viously, the greater is the distance between the j-th
voter and the judged peer, the smaller is the j-th com-
ponent of the weight vector. Actually, it seems more
clear and straightforward the introduction of a single-
attribute aggregation operator (briefly, S-AgOp), where

the unique attribute here considered, i.e. the network
distance, must have a negative influence. Along the
lines of the previous choice, we can exactly maintain
the same structure of the root-mean-power, but with
the crucial innovation that the exponent p dynami-
cally depends upon the attributes. This can be ac-
complished defining a negative operator F as

Fn(x,d) =
( 1

n

n∑
i=1

xp
i

) 1
p

, (3.2)

where p = −
n∑

i=1

di. It is not difficult to show that

such F is a M-AgOp in [0, 1]× ]0,∞[, with p = 1
and D(1) = ]0,∞[. The only non trivial statement is
that F is negative: the proof rests on a general result
regarding the quasi-arithmetic means (see [5] and the
references therein). Applying Proposition 4.6 of [5],
with f(x) = xp′

and g(x) = xp, where p′ < p < 0,
directly leads to the claim.

Remark 3.3. Any weighted aggregation can be seen
as a multi-attribute aggregation too, with a one-
dimensional set of attributes corresponding to consid-
ered weights.

4 PROPERTIES FOR
MULTI-ATTRIBUTE AGOPS

The main purpose of this section is to rewrite some
classical, relevant properties of an aggregation oper-
ator for a multi-attribute one. This task is quite el-
ementary for a static property: in this case, we can
state a general, natural principle.

Definition 4.1. Let P be a static property for an
arbitrary aggregation operator in I. We say that a
M-AgOp F in I × D(p) satisfies P if every AgOp Gμ

fulfills P for any μ ∈ F .

Note that, for instance, the operator F defined as in
(3.2) is a continuous, idempotent S-AgOp.

In some cases, when the n-ary function Fn of a M-
AgOp F shares a common static property with respect
to both the variable x ∈ I

n and the multi-vector of
attributes d ∈ Dn(p) for all n ∈ N, then we can speak
of global property. The next definition provides a clear
example.

Definition 4.2. We say that a M-AgOp F in I×D(p)
is globally continuous when every mapping Fn : I

n ×
Dn(p) → I is continuous for all n ∈ N.

Again, the operator F defined as in (3.2) is globally
continuous. Obviously, the class of not globally con-
tinuous M-AgOps is not empty.
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Example 4.1. Consider the negative M-AgOp F on
[0, 1] × [0,∞[2 given by

Fn(x,d) = max
i=1,...,n

{xf(d1
i )+g(d2

i )
i },

where f, g : [0,∞[→ [0,∞[ are two arbitrary, non-
decreasing mappings. This operator is continuous, but
generally not globally, if at least one between f and g
is not continuous.

Unlike the static case, the extension of a dynamic
property from an aggregation operator to a M-AgOp
F seems to be really problematic, essentially because
the arbitrariness in the choice of the sequence μ ∈ F
suffers the big drawback of imposing extreme rigidity
to the property, when passing from a generic n-ary
function Fn to the following ones, up to a substantial
loss of its significance. Consider, for instance, the case
of self-identity: adopting the principle as in Definition
4.1, we should say that a M-AgOp F in I × D(p) is
self-identical when

Fn(x,d(n)) =

= Fn+1((x1,d1 (n+1)), . . . , (xn,dn (n+1)),u)

for all x ∈ I
n, for any μ = {d(n)} ∈ F and for

any n ∈ N, where u = (Fn(x,d(n)),dn+1 (n+1)). As
argued above, the absolute arbitrariness of d(n) and
d(n+1) makes practically impossible the fulfillment of
this property by any M-AgOp: even if we imposed a
natural condition as dj (n+1) = dj (n) as j ∈ Nn, the
problem of a rational choice for dn+1 (n+1) would re-
main open. The problem of how defining a dynamic
property for a M-AgOp has to be considered case by
case: we propose now the concept of dynamic neutral
element.
Definition 4.3. We say that a M-AgOp F in I×D(p)
admits a dynamic neutral element e ∈ I if, for every
i ∈ Nn and for all x ∈ I

n such that xi = e, then

Fn(x,d(n)) = Fn−1(×j �=i(xj ,dj (n))) (4.1)

for any μ = {d(n)} ∈ F and for all n > 1.

We can provide examples which show that, even for
M-AgOps, static and dynamic ”neutrality” are each
other independent.

A dynamic property whose extension to a M-AgOp is
particularly interesting is the asymptotic idempotency
(see [3] and [4]). We recall that an AgOp G in I is
asymptotically idempotent if

lim
n→∞ δGn

(x) = x for all x ∈ I. (4.2)

Definition 4.4. We say that a M-AgOp F in I×D(p)
is asymptotically idempotent if there exists a sequence
μ = {d(n)} ∈ F such that

lim
n→∞ δGμ

n
(x) = x for all x ∈ I. (4.3)

Example 4.2. Let us consider two cases of negative
S-AgOps in [0, 1] × [0, 1]. In the first, F is defined as

Fn(x,d) =

⎧⎪⎨
⎪⎩

max
i=1,...,n

{xi
s(n)} ·

(
1 − 1

2n

)
+ 1

2n , n even;

max
i=1,...,n

{xi
s(n)} ·

(
1 − 1

2n

)
, otherwise,

where s(n) :=
n∑

i=1

di. Observe that condition (3.1) is

satisfied, because, fixed any d ∈ [0, 1]n, we have

inf
x∈In

Fn(x,d) =

{
1
2n , if n is even;
0, otherwise,

and

sup
x∈In

Fn(x,d) =

{
1, if n is even;
1 − 1

2n , otherwise.

This operator is asymptotically idempotent, because
we can find infinitely many sequences of attributes
such that eq. (4.3) holds: for instance, we can
choose d(n) = (0, 0, . . . , 0, 1) or (0, 0, . . . , 0, 1/2, 1/2)
or (1/n, . . . , 1/n), with s(n) = 1. On the contrary, if
we pick μ∗ := {d∗

(n)}n∈N
, with d∗

(n) = (1, . . . , 1) and
s(n) = n, we get

lim
n→∞ δ

Gμ∗
n

(x) = 0 for all x ∈ I.

In the second case, let F be given by

Fn(x,d) = max(x) ·

n∑
i=1

xi
di

1 +
n∑

i=1

xi
di

.

Note that condition (3.1) holds, because, for any d ∈
[0, 1]n, we have

sup
x∈In

Fn(x,d) =
n

1 + n
.

We claim that such operator fulfills eq. (4.3) for any
sequence μ ∈ F . First of all, note that, for any x ∈ I,
we have

δGμ
n
(x) ≤ x (4.4)

for every sequence μ ∈ F . Indeed, for any x ∈ I, we
easily get

δ
Gμ∗

n
(x) = x · nx

1 + nx
. (4.5)

Now, it is immediate to verify that an arbitrary μ ∈ F
is pointwise majorized by μ∗, hence, combining the
negativity of the operator with eq. (4.4) and (4.5),
we obtain that

δ
Gμ∗

n
(x) ≤ δGμ

n
(x) ≤ x,

and the claim follows from lim
n→∞ δ

Gμ∗
n

(x) = x for all
x ∈ I.
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Remark 4.1. Observe that Definition 2.9 may be ex-
tended without any change also to M-AgOps: partic-
ularly, we now present a generalization for a S-AgOp
of Examples 2.2 and 2.3.

Example 4.3. Let q ∈ N and consider the positive
S-AgOp F in [0, 1]× ]0,∞[ defined as

Fn(x,d) =

⎧⎪⎪⎨
⎪⎪⎩

(
1
q

n∑
i=1

x
s(n)
i

) 1
s(n)

, if n ≤ q;(
1
n

n∑
i=1

x
s(n)
i

) 1
s(n)

, otherwise.

It is easy to check that such F is a q-idempotent S-
AgOp. Note that the positivity is based upon the re-
sult recalled in Example 3.1 and the elementary in-
equality z

1
p < z

1
p′ for all z ∈ ]0, 1[, with 0 < p < p′.

Example 4.4. Consider the negative S-AgOp F in
[0, 1]× ]0,∞[ given by

Fn(x,d) =

{
max

i=1,...,n
{α(xi)

di}, if n > 1;

id, otherwise,

where α is defined as in Example 2.3. It is not difficult
to see that such F, according to Definition 4.3, admits
e = 0 as 3-dynamic (but not static) neutral element.

5 CONCLUSIONS

In this work, firstly we have introduced a new idea
of aggregation, motivated by the fact that the usual
boundary conditions which characterize a classical ag-
gregation operator do not cover all the possible func-
tions which play the role of aggregators. Secondly,
we have unified all the important cases, like weighted
means, in which one has to fuse both proper argu-
ments and collateral parameters into a single output
value, under an organic theory, called multi-attributes
aggregation. We have provided several examples, both
from a theoretical and practical point of view, in which
such theory is shown to be more general and significant
than the classical one.

Acknowledgements

The support of P402/11/0378, APV V −0073−10 and
PRIN 2008 project JNWWBP is acknowledged.

References

[1] T. Calvo, R. Mesiar and R.R. Yager (2004).
Quantitative weights and aggregation. IEEE
Transactions on Fuzzy Systems 12, pp 62–69.

[2] V. Cutello and J. Montero (1999). Recursive con-
nective rules. Int. J. Intelligent Systems 14, pp
3–20.

[3] R. Ghiselli Ricci (2004). Finitely And Ab-
solutely Non Idempotent Aggregation Opera-
tors. Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 12, pp 201–218.

[4] R. Ghiselli Ricci (2009). Asymptotically idempo-
tent aggregation operators. Int. Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
17, pp 611–631.

[5] M. Grabisch, J.L. Marichal, R. Mesiar and E. Pap
(2009). Aggregation functions. Cambridge Univer-
sity Press.

[6] G.J. Klir and T.A. Folger (1988). Fuzzy sets, Un-
certainty, and Information. Prentice-Hall Inter-
national, NY.
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